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Abstract— Diffusion models demonstrate superior perfor-
mance in capturing complex distributions from large-scale
datasets, providing a promising solution for quadrupedal lo-
comotion control. However, offline policy is sensitive to Out-
of-Distribution (OOD) states due to the limited state coverage
in the datasets. In this work, we propose a two-stage learning
framework combining offline learning and online preference
alignment for legged locomotion control. Through the offline
stage, the diffusion planner learns the joint distribution of state-
action sequences from expert datasets without using reward
labels. Subsequently, we perform the online interaction in the
simulation environment based on the trained offline planer,
which significantly addresses the OOD issues and improves the
robustness. Specifically, we propose a novel weak preference
labeling method without the ground-truth reward or human
preferences. The proposed method exhibits superior stability
and velocity tracking accuracy in pacing, trotting, and bounding
gait under both slow- and high-speed scenarios and can perform
zero-shot transfer to the real Unitree Go1 robots. The project
website for this paper is at https://shangjaven.github.
io/preference-aligned-diffusion-legged/

I. INTRODUCTION

Learning-based approaches significantly enhance the
agility and adaptability of quadrupedal robots to accomplish
diverse locomotion tasks [1], [2]. While online learning
demonstrates robustness in complex dynamic environments,
extensive trial-and-error interactions in simulation are re-
quired to learn an effective policy. Thus, learning an online
policy can be sample inefficient and requires a meticulously
designed reward function. In contrast, offline learning can
leverage the advantages of pre-collected offline datasets via
model-based controller [3], animal imitation [4], or Rein-
forcement Learning (RL) policy [5], significantly improving
data efficiency and reducing the cost of online interactions
[6]. In offline policy learning, diffusion models [7] have
shown superior performance in capturing complex action
distributions from offline trajectories [8], which is promising
to solve quadruped locomotion tasks with high-dimensional
action space and complex action distribution in various ter-
rains. As an example, DiffuseLoco [9] has recently proposed
to train a diffusion planner for quadrupedal locomotion from
offline trajectories.
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However, learning robust locomotion planners in a purely
offline manner requires collecting a large-scale dataset with
wide state coverage [10], especially covering situations that
the robot may encounter in the real world. This is especially
challenging in quadrupedal locomotion since the robot has
stochastic dynamics, and the external environment also has
noises or disturbances. Therefore, it is challenging to learn
a robust locomotion policy using the offline dataset with
limited state coverage, as the learned policy may be sensitive
to out-of-distribution (OOD) states in the real world. To
address such problems, it is desirable to combine offline
diffusion modeling with online interaction, where the col-
lecting of online trajectories mitigates the effects of OOD
samples. Dagger [11] is a traditional method that collects new
samples in interaction but requires real-time action labels
from the expert, which can be resource-intensive. Alterna-
tively, Diffusion-QL [12] performs policy improvement for
the diffusion policy while it requires reward labels for online
transitions. As a result, our work aims to integrate online
interactions after offline learning to address the OOD gener-
alization problem for diffusion planners, providing effective
policy refinement without the requirement of external expert
labels or reward functions.

In this paper, we propose a two-stage learning framework
combining offline and online learning for legged locomotion.
In the offline learning stage, the diffusion planner learns the
joint distribution of state-action sequence from an offline
dataset collected by other policies and does not use reward
labels in training. Then, we perform online interactions with
the environment based on the diffusion planner, mitigating
the effects of OOD samples and improving robustness via
preference alignment. Specifically, we propose a novel online
fine-tuning algorithm for the diffusion planner based on
preferences, which resembles Direct Preference Optimization
(DPO) [13] for diffusion models in text-to-image generation
[14]. Importantly, the preference score in our method is
measured by distances between the states and the nearest
neighbors of expert trajectories, which signifies the optimal-
ity of a trajectory and is used as the metric to construct
preference pairs. As a result, the preference data can be easily
constructed from such a weak preference label without the
ground-truth reward function or human preferences.

The contributions are summarized as follows: (i) We
propose a novel two-stage learning framework that combines
online interaction and offline diffusion learning to address the
OOD issue; (ii) We give an efficient preference alignment
algorithm for offline diffusion planner via DPO and weak
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Fig. 1. Video Frames in Simulation and Real World of the Proposed Architecture: (a-b) Trotting gait simulation and real-world test, (c-d) Pacing gait
simulation and real-world test, (e-f) Bounding gait simulation and real-world test

preference labels; (iii) The resulting diffusion planner ex-
hibits superior performance on stability and velocity tracking
accuracy in simulation and can be zero-shot transferred to the
real-world Unitree robot.

II. RELATED WORK

A. Learning-Based Approaches for Legged Locomotion

For legged locomotion, learning-based methods automat-
ically capture dynamic behaviors from interacting experi-
ences, largely reducing the need for manual expertise in
classical control [15]. Online RL has been widely applied
in learning complex locomotion skills in simulation, and
adaptive techniques like domain randomization are employed
to facilitate the transfer from the simulation to real robot
[16], [17], [18], [19], [20]. However, manually designing
reward functions and tuning weights can be particularly
challenging when dealing with complex tasks. Other methods
[21] adopt imitation learning to extract agile locomotion
strategies from real-world animal reference motions, while
it requires the motion-capture dataset that is more expensive
[22]. Recent studies utilized offline learning on locomotion
control with the limited scope confined to gym simulation
environments [23], [24]. While DiffuseLoco [9] steps further
to introduce a diffusion-based locomotion planner for legged
robots, the OOD generalization problem exists due to the
limited coverage of datasets.

B. Diffusion Models in Robotics

Diffusion models have demonstrated superior generative
capabilities in various robotics tasks such as robotic nav-
igation [25], manipulation [26], [27], and decision-making
[28]. For example, Diffuser [29] is a planner that analo-
gizes the planning to the denoising process in diffusion
models, demonstrating impressive adaptability in complex
long-horizon manipulation tasks. Recent studies [30], [31]
represent robot policies also as the diffusion process, where
the policy generates joint actions based on multi-modal
conditional inputs such as observations or visual information.
However, most existing research has been limited to high-
level tasks with low-dimensional action spaces, leaving room

for exploration in more complex, high-dimensional scenarios
such as legged locomotion.

III. PRELIMINARIES

A. DDPM

The proposed framework uses Denoising Diffusion Prob-
abilistic Models (DDPM) [32] with U-net and Transformer
backbone. DDPM starts by adding Gaussian noise to the
original data stepwise and uses the neural network to learn
the inverse denoising process. During the forward process,
Gaussian noise will be added gradually to the original data:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt is the variance scheduler, xt and xt−1 are samples
from two adjacent diffusion steps.

During the reverse chain, the model starts from the pure
Gaussian noise xT and gradually extracts the noise to derive
xT−1 ... x0. DDPM uses pθ(xt−1|xt) to approximate the
conditional denoising distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

For training, we use the simplified objective without the
weighting term [32] as

Lsimple
t (θ) = Ex0,ϵ,t

[
∥ϵt − ϵθ(xt, t)∥2

]
. (3)

IV. METHOD

A. System Design

The architecture of the proposed framework is illustrated
in Fig. 2. The entire system consists of four stages. Firstly,
preference-free offline datasets (i.e., D) containing various
gait patterns are collected in the Walk-These-Ways environ-
ment. Secondly, behavior cloning is performed by extracting
gait-specific diffusion policies from these datasets. Following
this, the diffusion policy is fine-tuned using the direct pref-
erence optimization method on the constructed preference
dataset (i.e., Dpref ). Finally, the latest model will be deployed
on the Unitree Go1 robot.
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Fig. 2. Proposed Architecture Framework Overview: (1) Generate Datasets: the offline datasets among pacing, trotting, and bounding gait are collected
through the expert PPO policy in the walk-these-ways task. (2) Behavior Cloning: given a condition input st, the diffusion policy can produce a sequence
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B. Offline Dataset Generation

This work utilizes Walk These Ways framework [16] as
the source locomotion policy and collects offline datasets
for the following gaits: pacing, trotting, and bounding. For
each gait, we roll out 2048 episodes with 250 time steps. The
data format as (st, at, st+1, rt,dt), where the dt turns True
when the episode ends. The behavior policy is denoted as
π(at|ct,bt), where ct includes commands, and bt indicates
the behavior parameters. The reward functions of the loco-
motion controller include task reward (tracking the command
speed), augmented auxiliary (task behavior related), and fixed
auxiliary (promoting robot stability).

The Unitree Go1 robot possesses 12 degrees of freedom,
with each leg comprising 3 degrees of freedom, correspond-
ing to the hip, thigh, and calf joints. The observation space
ot of offline diffusion planner consists of the state vector
st = {vcmd

t ,qt, q̇t, tt} ∈ R31. Specifically, vcmd
t ∈ R3

incorporates the velocity command along x, y and z axis,
qt ∈ R12 represent the joint positions, q̇t ∈ R12 represent
the joint velocities, tt ∈ R4 is the gait and timing related
parameter. Each feature of the observations is normalized by
Gaussian distribution before input into the diffusion models.

The action space At ∈ R12 represents each joint’s position
targets. We follow the actuator network [2] for actions-to-
torques mapping. The legged robot will then execute the
resultant torque.

C. Offline Diffusion Planner

We adopt a condition diffusion model to train an offline
diffusion planner for locomotion. The conditional input con-
tains the current observation state s0 (ensuring the generated
trajectory starts from the current state), and the output is the
action sequence a0:h of length horizon. During the training
process, the data loader will randomly sample the normalized
trajectory segment from the offline dataset with batch size
N , and then Gaussian noise will be added iteratively into the
trajectories. Subsequently, the diffusion model will denoise
the noisy trajectory to reconstruct the original data. The
diffusion loss measures the Mean-Squared Error (MSE)
between the true noise and predicted noise:

L = MSE(ϵk, ϵθ(a
t:t+h
k , st0, k)) (4)

Notably, ϵθ is the noise predictor, the superscript represents
the time step in the trajectory (start from time t with the
horizon h), while the subscript denotes the diffusion denois-
ing iterations (k). Besides, a fixed mask will be applied on
the loss to ignore the deviations in the observation condition
(s0).

During the inference, the Isaac Gym environment will
be reset initially, and the current observation serves as the
condition input for trajectory generation. Then, the trained
diffusion model will denoise the pure Gaussian noise to
derive the action sequence. Specifically, Classifier-Free Guid-
ance (CFG) [33] is employed to blend the conditioned and
unconditioned predictions with the weight w:

ϵ̄θ(xt, t, y) = (1 + w)ϵθ(xt, t, y)− wϵθ(xt, t) (5)



where ϵ̄θ is the predictor under classifier-free guidance, y
represent the conditional information.

After generating the output action sequence of length
horizon (h), the robot will execute every action stepwise
and record the state transitions. The inference and interaction
will continue until the episode length reaches the pre-defined
maximum length. To ensure real-time performance, we de-
crease the diffusion sampling step in inference to 10 steps
without sacrificing the locomotion performance. Besides,
since the whole generated action sequence will be executed,
the required inference frequency within each episode will be
reduced compared with only implementing the single action.

D. Preference Optimization

To mitigate the OOD issue in offline learning, we propose
the preference alignment method to fine-tune the offline
diffusion planner. Firstly, we roll out preference-free datasets
D from the pre-trained offline diffusion planner. When con-
structing the preference dataset Dpref , we randomly sample
two segments from D without replacement and then assign
preference labels based on the following method.

Considering that the ground-truth rewards are sometimes
challenging to obtain, we propose a weak preference labeling
method that allows for constructing preference labels without
the reward labels, requiring only few expert trajectories. The
optimal expert trajectory is selected from the given expert
trajectories based on their cumulative reward. For each state-
action pair (s, a) in the preference-free dataset D, we search
for the closest state-action pair (s′, a′) in the optimal expert
trajectory and calculate their Euclidean distance. The value
(v) of specific (s, a) is calculated as the equation:

vt = exp

(
−β × dt

|A|

)
(6)

where β is a hyperparameter with a value of 0.5, dt repre-
sents the calculated Euclidean distance, |A| is the dimension
of the action space. Notably, a similar technique was ap-
plied in [34]. However, we have modified this approach by
querying only based on the current state and action.

Finally, given two trajectories σ1 and σ2, we compute
the corresponding values for each state-action pair within
them. The segment with a higher cumulative value will be
determined as the winning segment (σwinning), as inferred
by the following equation:

σ1
winning = arg max

σ∈{σ1,σ2}

(
h∑

t=0

v
(1)
t ,

h∑
t=0

v
(2)
t

)
(7)

To demonstrate the effectiveness of our proposed weak
preference, we provide the alternative reward-available Pref-
erence Label (strong label) for experiment comparison. Sup-
pose the reward label can be obtained in the environment, and
the segment with higher cumulative reward will be preferred,
indicated in the following equation:

σ2
winning = arg max

σ∈{σ1,σ2}

(
h∑

t=0

r
(1)
t ,

h∑
t=0

r
(2)
t

)
(8)

According to the Bradley-Terry model, the preference
model can be described as (here σwinning is abbreviated as
σ+, the σlosing is abbreviated as σ−):

P (σ+ > σ−) = Sigmoid(r(σ+)− r(σ−)) (9)

The proposed loss function during the preference align-
ment incorporates two components: the preference loss
(LDPO) derived from DPO and the regularization term.
The preference loss amplifies the difference between the
“winning segment” and the “losing segment,” thus improving
the diffusion policy’s performance to align with the pref-
erence labels and generate more preferred samples. More
importantly, the regularization term helps to avoid significant
deviations from the original policy and thus mitigate the
OOD issue. The loss function for the preference alignment
stage is as follows:

L(ϵθ,Dpref) = LDPO(ϵθ,Dpref)− µEσ∈D log ϵθ(σ) (10)

practical approximation and detailed proof can be found in
[35].

V. EXPERIMENTAL RESULTS

The proposed framework utilizes the CleanDiffuser [36]
library to implement the diffusion model. The modularized
design allows easy switching between different backbones
and other customization. We conduct the classic velocity
tracking task in the simulation environment with different
gaits to quantify the performance of our proposed method.
During the experiment, we choose v = 0.5m/s to represent
slow speed and v = 1.0m/s to represent high speed.

For evaluation metrics, we consider the stability and
average x-axis speed. We assess an episode as stable when
the quadruped robot does not fall during all 250 steps. Addi-
tionally, the measured velocity along the x-axis is recorded.
For every experimental parameter setting, we collect 1024
episodes for each seed with a total of three random seeds.
Table I lists the hyperparameters used in the experiments.

TABLE I
HYPERPARAMETERS IN TRAINING, INFERENCE, AND PREFERENCE

ALIGNMENT

Stage Hyperparameter Value

Offline Diffusion Planner

Batch size 64
Horizon 64
Solver DDPM
Diffusion steps 20
Action loss weight 10.0

Inference w_cg 0.0001
Sampling steps 10

Preference Alignment
Regularization weight 1.0
Bias 0
Temperature 500

We chose three strong baselines for the experiments. The
first one is Conservative Q-learning (CQL). CQL mitigates
the Q-value overestimation problem by introducing the reg-
ularization term in conservative Q-value estimation. CQL



TABLE II
RESULTS COMPARISON BETWEEN THE PROPOSED METHOD AND BASELINES

Gaits Metrics CQL DDPM-Unet DDPM-Transformer Weak-Preference
Aligned Planner

Strong-Preference
Aligned Planner

Slow Pacing
(0.5 m/s)

Stability \ 40.9 72.0 81.6 87.3
x Velocity fail 0.60 0.43 0.46 0.49

Slow Trotting
(0.5 m/s)

Stability \ 39.5 58.7 78.5 85.2
x Velocity fail 0.59 0.36 0.42 0.50

Slow Bounding
(0.5 m/s)

Stability \ 40.4 60.1 70.8 72.4
x Velocity fail 0.59 0.21 0.44 0.48

Quick Pacing
(1.0 m/s)

Stability \ 77.4 81.4 91.6 91.8
x Velocity fail 0.49 0.62 0.64 0.73

Quick Trotting
(1.0 m/s)

Stability \ 58.9 66.6 84.4 89.5
x Velocity fail 0.48 0.61 0.63 0.67

Quick Bounding
(1.0 m/s)

Stability \ 32.4 46.6 84.3 89.2
x Velocity fail 0.42 0.78 0.72 0.80

is effective in high-dimensional state space and complex
environments. The second and third baselines are offline
diffusion planners with U-Net backbone and transformer
backbone, respectively. They are noted as DDPM-Unet and
DDPM-Transformer.

All experiments were performed on a high-performance
server, equipped with an Intel Xeon Gold-6248R CPU, an
NVIDIA GeForce RTX-A5000 GPU, and 256 GB of RAM,
running Ubuntu 20.04 OS. Such a configuration ensured that
the experiments could be executed efficiently and without
computational bottlenecks.

A. Performance of Preference-aligned Diffusion Planner

Table II presents a comparison of the proposed method
with baselines across different gaits (pacing, trotting, bound-
ing) and speeds (0.5 m/s and 1.0 m/s) in terms of stability
and average x-axis velocity.

CQL consistently failed all the locomotion tasks. We
observed in the simulation environment that the quadruped
robot either remained stationary on the ground or exhibited
subtle irregular jitters. This indicates that CQL struggles with
continuous control in complex locomotion tasks.

Stability Performance: The proposed preference-aligned
diffusion planner outperformed all baselines in stability
across all locomotion tasks. Specifically, for the quick
bounding task, the proposed weak preference-aligned planer
achieves 84.3% stability, much higher than 32.4% of the
DDPM-Unet and 46.6% of the DDPM-Tranformer. Further-
more, given that the proposed policy utilizes the transformer
backbone in the offline learning stage, the stability increased
by 37.7% after the preference alignment. Additionally, in the
slow trotting task, the stability increased by 19.8% relative to
the offline DDPM-Transformer model. These results indicate
that our preference-aligned planner exhibits superior stability
performance across high-speed and slow-speed scenarios.

The improvement in stability from the offline diffusion
planner can be attributed to the preference alignment stage,
which reduces sensitivity to OOD states and better aligns
the diffusion planner with real-world state distributions. Al-

though the offline diffusion planner sometimes can generate
reasonable action sequences (proper gait and no fall in an
episode), it is inadequate for handling OOD states caused
by slight deviations in action sequences in the simulation
environment. This will further lead to severe deviated action
predictions and significant cumulative error.

Velocity Tracking Performance: We evaluate the velocity
tracking performance by the difference between the average
measured x-axis velocity and the target velocity, and a more
minor deviation indicates more accurate tracking and better
velocity control. For example, in the quick bounding task, our
proposed planner achieves an average velocity of 0.72 m/s,
closely approaching the target speed of 1.0 m/s, significantly
outperforming DDPM-Unet (0.42 m/s). In the slow-speed
task, the proposed method demonstrates more precise veloc-
ity control with minor deviation from the target speed. For
example, in the slow trotting task, our method achieved an
average velocity of 0.42 m/s, closing matching the target and
surpassing DDPM-Unet (0.59 m/s) and DDPM-Transformer
(0.36 m/s).

To further present how our proposed method improves the
velocity tracking performance, we conduct a case study based
on the most challenging slow bounding task with the lowest
stability in Fig. 3.

Fig. 3 depicts the velocity tracking process within an
episode; the real-time velocities are smoothed with a moving
average filter. The DDPM-Transformer exhibits a smaller
standard deviation while it still deviates from the target
velocity. Additionally, DDPM-Unet shows high fluctuation in
measured velocity and fails to track the desired velocity. In
contrast, the proposed preference-aligned diffusion planner
(red line) reaches and maintains close to the target velocity.

In conclusion, the experimental result demonstrates that
the proposed method outperforms existing baselines on sta-
bility and velocity tracking performance. The quantitative
analysis supports the effectiveness and robustness of our
proposed two-stage learning framework in challenging lo-
comotion tasks.



TABLE III
ABLATION STUDIES ON PREFERENCE ALIGNMENT

Speed = 1.0 m/s Speed = 0.5 m/s

Pacing Trotting Bounding Pacing Trotting Bounding

Preference Number
1024 episodes (*0.5) 89.6 78.8 75.3 69.5 73.0 63.5
2048 episodes (*1.0) 90.1 77.7 75.9 76.4 79.1 66.4
3072 episodes (*1.5) 91.8 89.5 89.2 87.3 85.2 72.4

Preference Quality Weak Preference Label 91.6 84.4 84.3 81.6 78.5 70.8
Strong Preference Label 91.8 89.5 89.2 87.3 85.2 72.4

Regularization Without Regularization fail fail fail fail fail fail
With Regularization 91.8 89.5 89.2 87.3 85.2 72.4

Fig. 3. Velocity tracking result in slow-bounding gait between models

B. Ablation Studies

The ablation studies in Table III investigate the impact
of preference dataset size, preference label quality, and
regularization methods on stability performance.

Preference Dataset Size: Increasing the preference dataset
size from 1024 episodes to 3072 episodes improves the
performance across all gaits and speeds. For example, in the
slow-pacing task, the stability increased by 17.8%. Generally,
the sensitivity to the size of the preference dataset varies on
the difficulty of different locomotion tasks. In the simplest
quick-pacing task, 1024 episodes of the preference dataset
are sufficient to achieve relatively stable improvement. We
observe in the simulation result that a smaller preference
dataset may introduce the risk of insufficient coverage on
state distribution, further influencing task performance. How-
ever, the overall results indicate our proposed preference
alignment framework demonstrates stable improvement in
the offline diffusion planner under limited preference data.

Preference Label Quality: We compare the performance
between the reward-based preference label (strong prefer-
ence) and our proposed reward-unavailable preference label
(weak preference). The results in Table III indicate that weak
preference labels can achieve strong performance across
most locomotion tasks with slight differences compared with
strong preference labels. For example, the performance of the
weak preference label closely approaches the strong pref-

erence label in the quick-pacing and slow-bounding tasks.
Notably, the preference alignment based on weak preference
labels demonstrates significant improvement compared with
the DDPM-Transformer on all locomotion tasks, indicating
the effectiveness of the weak preference labeling method and
proposed preference alignment framework.

Regularization Methods: The ablation results in Table III
suggest the critical role of the proposed regularization term
in the preference alignment stage. The CPOD-KL method
eliminates the regularization term and solely emphasizes the
difference between the winning segment (σwinning) and the
losing segment (σlosing) under the current policy and refer-
ence policy. The results demonstrate that without the regular-
ization term, the preference alignment will consistently cause
fail in all locomotion tasks. In comparison, our proposed
preference alignment method encourages the generation of
winning segments while maintaining the overall likelihood of
the winning and losing segments through the regularization
term, thus effectively addressing the OOD issue.

VI. CONCLUSIONS

This paper presents a two-stage learning framework that
integrates offline diffusion learning with online preference
alignment to address the OOD issues. We leverage the offline
diffusion planner to approximate the complex state-action
sequences and further utilize the proposed weak preference
label to conduct the preference alignment. Experiments in-
dicate that our framework improved the stability and ve-
locity tracking accuracy and can be deployed on Unitree
Go1 robots. Future work can incorporate extra modalities,
such as vision, into the framework to further enhance the
generalization of the locomotion policy.
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