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Abstract

This paper investigates the use of regression techniques for solving
a current problem. We begin by performing data preprocessing and
then introduce a range of linear-based methods. We also examine di-
mensionality reduction techniques, including PCR and the ensemble
method, random forest. Based on the findings from the various model,
we propose and evaluate the best linear model. The assessment and
final models are given in the end.
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1 Introduction of Data Set and Problem

The data set is about riboflavin production by Bacillus subtilis, which
contains 𝑛 = 71 observations of 𝑝 = 4088 predictors (gene expressions) and
a one-dimensional response variable(riboflavin production) available at [1]. In
the rest of this paper, we use the terms predictors and features interchangeably.
Let 𝑌𝑖 and ̂𝑌𝑖 denote the response value and estimated value of 𝑖′𝑠 observation,
respectively and let 𝑋𝑖,𝑗 be the 𝑗′𝑠 component of observation 𝑖, 𝑖 = 1, ⋯ , 𝑛, 𝑗 =
1, ⋯ , 𝑝. The main purpose of this essay is to estimate a function 𝑚

̂𝑌𝑖 = 𝑚(𝑋𝑖,1, 𝑋𝑖,2, ⋯ , 𝑋𝑖,𝑝) + 𝜖𝑖

such that minimizes
∑

𝑖
(𝑌𝑖 − ̂𝑌𝑖)

2

where
𝜖𝑖

𝑖.𝑖.𝑑.∼ 𝑁(0, 𝜎2) and 𝑖 = 1, 2, ⋯ , 𝑛.

On the one hand, based on the work of other scholars[5], it is believed
that 𝑚(•) be well approximated by a linear model; on the other hand, we
can fit with a linear model first, and then perform residual analysis to verify
the rationality of the linear model. In addition, we also used dimensionality
reduction methods and other machine learning algorithms to try to fit 𝑚(•).

In the following sections of this paper, we present a comprehensive analysis
of regression techniques for solving the current problem. After performing
data preprocessing in section two, we introduce various linear-based methods
in section three. We then explore PCR, a dimensionality reduction technique,
and the ensemble method, random forest. In section five, we demonstrate the
use of these methods and present our proposed model, the best linear model,
based on the findings. Finally, in section six, we evaluate and select the best
model, summarizing the various models generated throughout the study.

2 Data Preprocessing

We first draw the box plot, histogram plot, and the fitted curve of riboflavin
production(q_RIBFLV ), which are shown below.
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Figure 1: box plot Figure 2: fitted curve Figure 3: histogram

The data shows that the median value of riboflavin production is -7 and
approximately follows a skewed distribution. Then we draw the mean of 𝑝 =
4088 features.

Figure 4: mean of features

The mean of all features 𝑀 ≈ 7.67, Additionally, most features are in
[𝑀 − 1, 𝑀 + 1].

To apply linear-based methods, we standardize the data by

𝑋new
𝑖,𝑗 =

𝑋𝑖,𝑗 − 𝜇𝑗

𝑠𝑗

where

𝜇𝑗 =
∑𝑛

𝑖=1 𝑋𝑖,𝑗

𝑛
and 𝑠𝑗 = √∑𝑛

𝑖=1(𝑋𝑖,𝑗 − 𝜇𝑗)
𝑛

Meanwhile, we standardize 𝑌𝑖 similarly.
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3 Linear Regression With Varies Penalties

We start with linear regression. Suppose there exists a linear relationship
between the response variable and predictors. Let

𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑌1

𝑌2

⋮
𝑌𝑛

⎤
⎥
⎥
⎥
⎦

, 𝑋 =
⎡
⎢
⎢
⎢
⎣

1 𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑝

1 𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑝

⋮ ⋮ ⋮ ⋮
1 𝑋𝑛,1 𝑋𝑛,2 ⋯ 𝑋𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

, 𝛽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽0

𝛽1

⋮
⋮

𝛽𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜖 =
⎡
⎢
⎢
⎢
⎣

𝜖1

𝜖2

⋮
𝜖𝑛

⎤
⎥
⎥
⎥
⎦

The model can be written as

𝑌 = 𝑋𝛽 + 𝜖.

Let 𝑄1(𝛽) denote the loss function of linear regression, then

𝑄1(𝛽) = ‖𝑌 − 𝑋𝛽‖2 = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)

Minimize the equation above by taking the derivative of 𝑄1 with respect
to 𝛽 yields ̂𝛽, which is

̂𝛽LSE = (𝑋′𝑋)−1 𝑋′𝑌 .

The problem is, when 𝑝 >> 𝑛, 𝑋′𝑋 is not invertible, which makes ̂𝛽LSE

incalculable. We will demonstrate different linear-based techniques to fix it in
the rest of this section.

3.1 Lasso Regression

For simplicity, compared with linear regression, lasso regression[6] add an
additional 𝐿1 norm penalty term in the loss function. More specifically, let
𝑄2(𝛽) be the loss function of lasso regression, then

𝑄2(𝛽) = ‖𝑌 − 𝑋𝛽‖2 + 𝜆𝑙𝑎𝑠𝑠𝑜‖𝛽‖1

which is equivalent to arg min ‖𝑌 − 𝑋𝛽‖2 s.t. ∑𝑝
𝑗=1 ∣𝛽𝑗∣ ≤ 𝑡𝑙𝑎𝑠𝑠𝑜

4



Selected topics in frontiers of Statistics II

Minimizing 𝑄2(𝛽), we can get

̂𝛽lasso =

⎧{{
⎨{{⎩

̂𝛽𝐿𝑆𝐸 − 𝜆̃, if ̂𝛽𝐿𝑆𝐸 ≥ 𝜆̃

0, if − 𝜆̃ ≤ ̂𝛽𝐿𝑆𝐸 < 𝜆̃
̂𝛽𝐿𝑆𝐸 + 𝜆̃, if ̂𝛽𝐿𝑆𝐸 ≤ −𝜆̃

where 𝜆̃ = 𝜆𝑙𝑎𝑠𝑠𝑜
2 .

Based on the result above, we can see that lasso regression can select vari-
ables by setting the smaller to 0. The hyperparameter 𝜆𝑙𝑎𝑠𝑠𝑜 can be obtained
by cross validation, which is explained comprehensively in section five.

3.2 Ridge Regression

The loss function 𝑄3(𝛽) for ridge regression[4] is

𝑄3(𝛽) = ‖𝑌 − 𝑋𝛽‖2 + 𝜆𝑟𝑖𝑑𝑔𝑒‖𝛽‖2
2

which is equivalent to arg min ‖𝑌 − 𝑋𝛽‖2 s.t. ∑𝑝
𝑗=1 𝛽2

𝑗 ≤ 𝑡𝑟𝑖𝑑𝑔𝑒. Minimizing
𝑄3(𝛽), we can get

̂𝛽ridge = (𝑋′𝑋 + 𝜆𝑟𝑖𝑑𝑔𝑒𝐼)−1 𝑋′𝑌

We will also use cross validation method to determine the hyperparameter
𝜆𝑟𝑖𝑑𝑔𝑒 in section five.

3.3 Elastic Net

Elastic net[8] is a combination of ridge and lasso. More specifically, the
loss function 𝑄4(𝛽) is

𝑄4(𝛽) = ‖𝑌 − 𝑋𝛽‖2 + 𝜆𝑛𝑒𝑡 {0.5(1 − 𝛼)‖𝛽‖2
2 + 𝛼‖𝛽‖1}

where 0 ≤ 𝛼 ≤ 1; if 𝛼 = 1, it is lasso and 𝛼 = 0 ridge.

3.4 Least Angle Regression

Least angle regression(LARS)is an algorithm for fitting linear regression
models to high-dimensional data[3]. It is a type of forward stepwise regression,

5
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which starts with no variables in the model and adds variables one at a time
based on the strength of their association with the response variable.

The specific steps for implementation are as follows:

• Step1: Initialize the set of variables to be empty, and set the current
response variable to be the original response variable minus the mean of
the response variable:

𝑆 = ∅

𝑌 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑌 − 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

where 𝑆 is the set of variables, 𝑌 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is the current response variable,
𝑦 is the original response variable, and 𝑛 is the number of observations.

• Step2: Calculate the correlation between each explanatory variable and
the current response variable:

𝜌𝑗 =
∑𝑛

𝑖=1(𝑋𝑖𝑗 − 𝑋𝑗)(𝑌𝑖 − 𝑌)

√∑𝑛
𝑖=1(𝑋𝑖,𝑗 − 𝑋𝑗)2√∑𝑛

𝑖=1(𝑌𝑖 − 𝑌)2

where 𝜌𝑗 is the correlation between the 𝑗th feature and the current re-
sponse variable.

• Step3: Select the explanatory variable with the largest correlation with
the current response variable and add it to the set of variables:

𝑗∗ = arg max
𝑗∈𝑆

|𝜌𝑗|

𝑆 = 𝑆 ∪ 𝑗∗

Where 𝑗∗ is the index of the explanatory variable with the largest corre-
lation with the current response variable, and 𝑆 is the set of variables.

• Step4: Update the current response variable to be the original response
variable minus the mean of the current model’s predicted values:

𝑌 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = 𝑌 − 1
𝑛

𝑛
∑
𝑖=1

̂𝑌𝑖

6
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where 𝑌 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is the current response variable, 𝑌 is the original re-
sponse variable, ̂𝑌𝑖 is the predicted value for the 𝑖th observation, and 𝑛
is the number of observations.

• Step5: Repeat steps 2-4 until all explanatory variables have been added
to the set of variables or the absolute value of the current response vari-
able is less than a threshold: while |𝑌 (𝑐𝑢𝑟𝑟)| > threshold and |𝑆| < 𝑝

• Step6: Use the set of variables to fit a linear regression model:

̂𝛽LARS = (𝑋𝑇
𝑆𝑋𝑆)−1𝑋𝑇

𝑆𝑌

where ̂𝛽LARS is the vector of estimated coefficients, 𝑋𝑆 is the matrix of
explanatory variables in the set 𝑆, and 𝑌 is the response variable.

LARS has the advantage of handling high-dimensional data, particularly
in cases where 𝑛 << 𝑝, and it does not require the explanatory variables to be
orthogonal (uncorrelated). It can also mitigate the effects of multicollinearity,
making it a valuable tool for regression analysis.

4 Other applicable Methods

4.1 Principal Component Regression

Principal Component Regression, abbreviated as PCR, is closely related
to principal component analysis(PCA). Here we only provide a general intro-
duction and overview of the method, and the technical details can be found
here[7]. PCA is a statistical technique for reducing the dimension of a dataset.
This is accomplished by linearly transforming the data into a new coordinate
system where (most of) the variation in the data can be described with fewer
dimensions than the initial data.

Let 𝑍1, ⋯ , 𝑍𝐾 represent a linear combination of original features, i.e.

𝑍𝑘 =
𝑝

∑
𝑗=1

𝜙𝑗𝑘𝑋𝑗

where 𝜙1𝑚, ⋯ , 𝜙1𝑚 are elaborately designed constants and 𝑋𝑗 = [𝑋𝑗,1, ⋯ , 𝑋𝑗,𝑝]′.
These 𝑍𝑘s are called principal components, which can be used to fit a linear

7
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model:
̂𝑌𝑖 = 𝛽0 +

𝐾
∑
𝑘=1

𝛽𝑘𝑍𝑖,𝑘 + 𝜖𝑖, 𝑖 = 1, ⋯ , 𝑛

Selecting a suitable handmade hyperparameter 𝐾 can effectively address the
issue of 𝑛 >> 𝑝.

In short, the procedure of PCR is concluded in the following graph.

Figure 5: The procedure of PCR

4.2 Random Forest

Random forest[2] is a machine-learning algorithm that can be used for
classification and regression tasks. They are an ensemble method, which means
they are made up of multiple individual models that work together to make a
final prediction.

In the case of random forests, the individual models are decision trees. A
decision tree is a flowchart-like tree structure that makes predictions based on
the values of input features. A random forest builds many decision trees and
aggregates their predictions to make a final prediction.

One of the critical features of random forests is that they use a random
subset of the features at each split in the decision tree. This means that each
decision tree in the forest is slightly different, making different predictions.
The final prediction is made by averaging the predictions of all the individual
decision trees.

Random forests are widely used because they are relatively simple to imple-
ment and can handle high-dimensional and multicollinear data well. They are
also resistant to overfitting, which means that they generally do not perform
as well on the training data as on test data. This makes them a good choice
for many types of machine-learning tasks.

8
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To sum up, the random forest construct procedure is shown in the following
figure.

Figure 6: The procedure of random forest

5 Core Procedures and Linear Regression Anal-
ysis

5.1 Core Procedure

The core procedures to fit the model are shown below.

Figure 7: core procedure to fit the model

9
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In short, the core procedures can be summarized in three steps:

• Step1: Use leave one out cross validation(LOOCV) to separate training
dataset and testing dataset

• Step2: For each training dataset, apply the methods in section three to
fit the specific model and evaluate it on the testing dataset

• Step3: Use the specific features to fit and evaluate a linear model

These procedures are implemented primarily through the ”scikit-learn” pack-
age in python. The rest of this section is a detailed explanation of steps two
and three. In step two, we need to fit different models based on different meth-
ods. In round 𝑚, we have specific training and testing dataset. Take the lasso
as an example. We run it on the training set via five folds cross validation,
which yields the best 𝜆𝑙𝑎𝑠𝑠𝑜 and the model.

𝑌lasso_m = 𝛽lasso_m_0 + 𝛽lasso_m_1 𝑋lasso_m_1 + ⋯ + 𝛽lasso_m_q𝑋lasso_m_q + 𝜖

Similarly, we do it for ridge, elastic net, least angle regression, respectively.
Moreover, we need to find the specific feature for linear regression in step 3.
We know that lasso and least angle regression can select important features.
Based on this property, we use set

𝑋lasso_m = {𝑋lasso_m_1, ⋯ , 𝑋lasso_m_q}

and
𝑋LARS_m = {𝑋LARS_m_1, ⋯ , 𝑋LARS_m_q}

to record the features respectively.
In step 3, we fit the linear regression model based on the feature

𝑋LR_m = 𝑋lasso_m ∪ 𝑋LARS_m

By applying the backward selection method, we can get the linear regres-
sion model

𝑌LR_m = 𝛽LR_m_0 + 𝛽LR_m_1 𝑋LR_m_1 + ⋯ + 𝛽LR_m_q𝑋LR_m_q

and we call it the best linear regression model.

10
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5.2 Best Linear Regression Model Analysis

This section will analyze the best linear model in a randomly chosen round
𝑚. The feature sets of lasso and least angle regression are

𝑋lasso_m =

{𝑋72, 𝑋243, 𝑋314, 𝑋414, 𝑋623, 𝑋858, 𝑋1100, 𝑋1130, 𝑋1206, 𝑋1209, 𝑋1278, 𝑋1363,

𝑋1424, 𝑋1477, 𝑋1515, 𝑋1523, 𝑋1527, 𝑋1635, 𝑋1638, 𝑋1761, 𝑋1826, 𝑋1848, 𝑋1854,

𝑋2026, 𝑋2033, 𝑋2241, 𝑋2344, 𝑋2461, 𝑋2483, 𝑋2563, 𝑋2738, 𝑋2873, 𝑋3103, 𝑋3104,

𝑋3225, 𝑋3310, 𝑋3464, 𝑋3513, 𝑋4002, 𝑋4003, 𝑋4044, 𝑋4074}

𝑋LARS_m =

{𝑋72, 𝑋314, 𝑋414, 𝑋623, 𝑋826, 𝑋1122, 𝑋1130, 𝑋1278, 𝑋1363, 𝑋1474, 𝑋1477, 𝑋1515,

𝑋1523, 𝑋1527, 𝑋1638, 𝑋1761, 𝑋1819, 𝑋1826, 𝑋1848, 𝑋1854, 𝑋1856, 𝑋2026, 𝑋2241,

𝑋2563, 𝑋2738, 𝑋3104, 𝑋3225, 𝑋3310, 𝑋3513, 𝑋4002, 𝑋4003, 𝑋4074}

Then we have 𝑋LR_m = 𝑋lasso_m∪𝑋LAR_m and |𝑋lasso_m | = 42, |𝑋LARS_m | =
32, |𝑋LR_m| = 46. Using the backward selection method, we remove the least
significant variable from the set 𝑋LR_m at each step and eventually obtain the
following model.

11
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Figure 8: The result of the best linear model in round 𝑚

Meanwhile, we provide the residual plots:

12
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Figure 9: Q_Q plot Figure 10: residual plot Figure 11: residual his-
togram

Recall that the assumptions for linear models are:

• normality: residuals are normally distributed,

• independence: residuals are independent of each other,

• homoscedasticity: The variance of residuals is homogeneous.

Based on the results from figure 8 to 11, we verify the assumption one by
one with 𝛼 = 0.05:

• normality: from figure 9, 11, and the value of skew and kurtosis, we
believe that residuals are normally distributed,

• independence: from the value of Durbin-Watson statistics, we believe
that residuals are independent of each other,

• homoscedasticity: from figure 10, we believe that the mean of residu-
als is 0. However, we cannot conclude that the variance of residuals is
homogeneous.

To solve heteroscedasticity, we can apply a proper transformation. How-
ever, considering that the pattern can be eliminated by removing outliers and
all other assumptions are satisfied, and both 𝑅2 and 𝑎𝑑𝑗𝑢𝑠𝑡 𝑅2 values are
fantastic, we believe this linear model is reasonable.

13
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6 Assessment Criteria and Final Models

6.1 Assessment Criteria and Analysis

We propose four assessment criteria, 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛, 𝐸𝑅𝑡𝑟𝑎𝑖𝑛 for the training
sets, and 𝑀𝑆𝐸𝑡𝑒𝑠𝑡, 𝐸𝑅𝑡𝑒𝑠𝑡 for the testing set where 𝐸𝑅 represents the error
range. The formula for these criteria is as follows:

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 =
𝑟𝑜𝑢𝑛𝑑=71

∑
𝑚=1

1
𝑟𝑜𝑢𝑛𝑑

|𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡|=70

∑
𝑚_𝑡𝑟𝑎𝑖𝑛=1

(𝑌𝑚_𝑡𝑟𝑎𝑖𝑛 − ̂𝑌m_train)2

|𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡|

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 =
𝑟𝑜𝑢𝑛𝑑=71

∑
𝑚=1

1
𝑟𝑜𝑢𝑛𝑑

∑
𝑚_𝑡𝑒𝑠𝑡

(𝑌𝑚_𝑡𝑒𝑠𝑡 − ̂𝑌m_test)2

𝐸𝑅𝑡𝑟𝑎𝑖𝑛 = [ min
𝑟𝑜𝑢𝑛𝑑

(min
𝑡𝑟𝑎𝑖𝑛

(𝑌𝑗 − ̂𝑌𝑗)) , max
𝑟𝑜𝑢𝑛𝑑

(max
𝑡𝑟𝑎𝑖𝑛

(𝑌𝑗 − ̂𝑌𝑗))]

𝐸𝑅𝑡𝑒𝑠𝑡 = [ min
𝑟𝑜𝑢𝑛𝑑

(min
𝑡𝑒𝑠𝑡

(𝑌𝑗 − ̂𝑌𝑗)) , max
𝑟𝑜𝑢𝑛𝑑

(max
𝑡𝑒𝑠𝑡

(𝑌𝑗 − ̂𝑌𝑗))]

Here 𝑚_𝑡𝑟𝑎𝑖𝑛 and 𝑚_𝑡𝑟𝑎𝑖𝑛 represent the data in the training dataset
and the testing dataset for round 𝑚, respectively. Also,𝑌 and ̂𝑌 represent
the actual value and estimated value by a specific method, respectively. The
table below records the values of different methods under these criteria, where
”overfit LR” represents the linear model fitted with all features, ”best LR”
represents the best linear regression, and ”RF” represents random forest. The
parentheses following each method in the first column represent the run time
of the method.

method
criteria 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 𝑀𝑆𝐸𝑡𝑒𝑠𝑡 𝐸𝑅𝑡𝑟𝑎𝑖𝑛 𝐸𝑅𝑡𝑒𝑠𝑡

overfit LR(4.978s) 2.4542e-29 0.2657 [-3.3750,2.9310] [-1.6054,1.1532]
lasso(831.2s) 0.03308 0.2020 [-0.4523,0.9383] [-1.5853,0.7661]
ridge(6.988s) 4.4030e-5 0.2649 [-0.0183,0.0296] [-1.6144,1.1497]
elastic net(433.6s) 0.03359 0.2209 [-0.4974,0.9089] [-1.7289,0.7718]
LARS(354.3s) 0.04833 0.1955 [-0.5273,1.0854] [-1.6902,0.7919]
PCR(59.36s) 0.1238 0.2247 [-0.9759,1.5454] [-1.7926,0.9869]
RF(565.9s) 0.05855 0.4568 [-0.6246,1.0796] [-2.0450,1.2706]
best LR(15.44s) 0.03211 0.1792 [-0.5328,0.6925] [-1.1666,0.9580]

Table 1: The assessment criteria for different methods
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In fact, compared to the test set, we are not particularly concerned with
the performance on the training set because, in the case of 𝑝 >> 𝑛, the model
is very prone to overfitting and cannot predict for a new observation. A typical
example is ”overfit LR”. This model performs exceptionally well on the training
set, but its performance on the test set is poor. Therefore, we need to focus
on the model’s performance on the test set. As we can see, ”best LR” has the
smallest 𝑀𝑆𝐸 and 𝐸𝑅 on the test set. Hence we consider the proposed ”best
LR” model is the best.

6.2 Final Models

Ensemble methods are a set of techniques that combine the predictions of
multiple models to produce a more accurate and stable prediction of a single
model by reducing overfitting and increasing generalization.

We will use the ensemble idea to present the final model based on different
methods. More specifically,

Final lasso model 𝑌𝑙𝑎𝑠𝑠𝑜: ensemble of {𝑌lasso_1 , ⋯ , 𝑌lasso_71 }

Final ridge model 𝑌𝑟𝑖𝑑𝑔𝑒: ensemble of {𝑌ridge_1 , ⋯ , 𝑌ridge_71 }

Final elastic net model 𝑌𝑒𝑙𝑎𝑠𝑡𝑖𝑐: ensemble of {𝑌elastic_1 , ⋯ , 𝑌elastic_71 }

Final LARS model 𝑌𝑒𝑙𝑎𝑠: ensemble of {𝑌LARS_1 , ⋯ , 𝑌LARS_71 }

Final PCR model 𝑌𝑃𝐶𝑅: ensemble of {𝑌PCR_1 , ⋯ , 𝑌PCR_71 }

Final random forest model 𝑌𝑅𝐹: ensemble of {𝑌RF_1 , ⋯ , 𝑌RF_71 }

Final best linear regression model 𝑌𝐿𝑅: ensemble of {𝑌LR_1 , ⋯ , 𝑌LR_71 }

In addition to the given 71 samples, if there is a new observation, then the
prediction value of the specific model generated by a certain method for this
new sample is the simple average of the prediction values of the 71 models
from the ensemble set.
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