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Abstract

This paper investigates the use of regression techniques for solving
a current problem. We begin by performing data preprocessing and
then introduce a range of linear-based methods. We also examine di-
mensionality reduction techniques, including PCR and the ensemble
method, random forest. Based on the findings from the various model,
we propose and evaluate the best linear model. The assessment and

final models are given in the end.

Keywords: Linear-based methods, Random Forest, PCR, Cross

Validation

6 Southern University
e c h of Science and
w Technology



95%3}2;‘?-:? B#E3

Selected topics in frontiers of Statistics 11 ViRTus TRUTH ADvAN o
Contents
1 Introduction of Data Set and Problem 2
2 Data Preprocessing 2
3 Linear Regression With Varies Penalties 4
3.1 Lasso Regression . . . . . ... ... ... ... .. ...... 4
3.2 Ridge Regression . . . .. .. ... ... L. )
3.3 Elastic Net . . . .. .. .. . ... ... 5)
3.4 Least Angle Regression . . . . . . . . ... ... ... .. .. 5
4 Other applicable Methods
4.1 Principal Component Regression . . . .. .. ... ... ...
4.2 Random Forest . . . . .. .. ... ... L.
5 Core Procedures and Linear Regression Analysis
5.1 Core Procedure . . . . . . ... .. ... 9
5.2 Best Linear Regression Model Analysis . . . . . ... ... .. 11
6 Assessment Criteria and Final Models 14
6.1 Assessment Criteria and Analysis . . . . .. .. ... ... .. 14
6.2 Final Models . . . .. .. .. .o 15
References 16



&
. . . .. BAERE v B
Selected topics in frontiers of Statistics I AEEE REER

1 Introduction of Data Set and Problem

The data set is about riboflavin production by Bacillus subtilis, which
contains n = 71 observations of p = 4088 predictors (gene expressions) and
a one-dimensional response variable(riboflavin production) available at [1]. In
the rest of this paper, we use the terms predictors and features interchangeably.
Let Y, and }A’l denote the response value and estimated value of i"s observation,
respectively and let X, ; be the j's component of observation 4,4 = 1,-+,n,j =

1,---,p. The main purpose of this essay is to estimate a function m
Y, =m(X; 1, X0, X, ) + 6

such that minimizes

where
€ g N(0,0%) and i =1,2,--,n.

On the one hand, based on the work of other scholars[5], it is believed
that m(e) be well approximated by a linear model; on the other hand, we
can fit with a linear model first, and then perform residual analysis to verify
the rationality of the linear model. In addition, we also used dimensionality
reduction methods and other machine learning algorithms to try to fit m(e).

In the following sections of this paper, we present a comprehensive analysis
of regression techniques for solving the current problem. After performing
data preprocessing in section two, we introduce various linear-based methods
in section three. We then explore PCR, a dimensionality reduction technique,
and the ensemble method, random forest. In section five, we demonstrate the
use of these methods and present our proposed model, the best linear model,
based on the findings. Finally, in section six, we evaluate and select the best

model, summarizing the various models generated throughout the study.

2 Data Preprocessing

We first draw the box plot, histogram plot, and the fitted curve of riboflavin
production(q_RIBFLV), which are shown below.
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Figure 1: box plot

Figure 2: fitted curve
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Figure 3: histogram

The data shows that the median value of riboflavin production is -7 and

approximately follows a skewed distribution. Then we draw the mean of p =

4088 features.
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Figure 4: mean of features
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The mean of all features M =~ 7.67, Additionally, most features are in

[M —1,M +1].

To apply linear-based methods, we standardize the data by

where

Xij =1

Sj

new ___
X3P =

My =

Meanwhile, we standardize Y, similarly.
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3 Linear Regression With Varies Penalties

We start with linear regression. Suppose there exists a linear relationship

between the response variable and predictors. Let

Bo
Y; 1 X1,1 X1,2 Xl,p 3 €

1
vex= e e e ae e |
Yn 1 Xn,l Xn,2 Xn,p : €n

L5,

The model can be written as
Y =XB+e
Let () denote the loss function of linear regression, then

Q1(B) =Y = XB|* = (Y = Xp)'(Y — XP)

Minimize the equation above by taking the derivative of ); with respect
to [ yields B, which is
5 ’ =1
Prse = (X' X) ~ XY

The problem is, when p >> n, X’ X is not invertible, which makes BLSE
incalculable. We will demonstrate different linear-based techniques to fix it in

the rest of this section.

3.1 Lasso Regression

For simplicity, compared with linear regression, lasso regression[6] add an
additional L; norm penalty term in the loss function. More specifically, let

Q5 (B) be the loss function of lasso regression, then

QQ(ﬁ) = HY - XBHQ + Alasso”ﬁ”l

which is equivalent to argmin [|[Y — X3|? s.t. Z?Zl 18,1 < tiasso
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Minimizing Q4 (), we can get
Brse— A if Brsg > A
ﬁlasso = 07 if —A < ﬂLSE <A
Brsp+ A i Brsg < —A
where \ = —)‘1“2“0.
Based on the result above, we can see that lasso regression can select vari-

ables by setting the smaller to 0. The hyperparameter \;,,,, can be obtained

by cross validation, which is explained comprehensively in section five.

3.2 Ridge Regression

The loss function Q4(3) for ridge regression[!] is

Qs(8) = Y — XBI* + Avigge 1513

which is equivalent to argmin Y — Xf|? s.t. Zf L 2 <t Minimizing

7 — Yridge-*
Qs(B), we can gt

Bridge - (X/X+ )‘m'dgel)il XY

We will also use cross validation method to determine the hyperparameter

A

ridge 1D Section five.

3.3 Elastic Net

Elastic net[8] is a combination of ridge and lasso. More specifically, the
loss function @, () is

Q4(B) =Y = XBI? + Aper {0.5(1 — )83 + ] 8], }

where 0 < o < 1; if a = 1, it is lasso and a = 0 ridge.

3.4 Least Angle Regression

Least angle regression(LARS)is an algorithm for fitting linear regression

models to high-dimensional data[3]. It is a type of forward stepwise regression,
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which starts with no variables in the model and adds variables one at a time
based on the strength of their association with the response variable.

The specific steps for implementation are as follows:

o Stepl: Initialize the set of variables to be empty, and set the current
response variable to be the original response variable minus the mean of

the response variable:

S=10

current) __ l
y( =y — - Z Y,

(current)

where S is the set of variables, Y’ is the current response variable,

y is the original response variable, and n is the number of observations.

e Step2: Calculate the correlation between each explanatory variable and

the current response variable:

p; = YL (X =X )Y —Y)
T

where p; is the correlation between the jth feature and the current re-

sponse variable.

o Step3: Select the explanatory variable with the largest correlation with

the current response variable and add it to the set of variables:
¥ = argmax |p.
j gmax ||
S=5uUy*

Where j* is the index of the explanatory variable with the largest corre-

lation with the current response variable, and .S is the set of variables.

o Step4: Update the current response variable to be the original response

variable minus the mean of the current model’s predicted values:

1N A
Y(current) S Vg Y.
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where Y(ewrrent) g the current response variable, Y is the original re-
sponse variable, )A/Z is the predicted value for the ith observation, and n

is the number of observations.

o Stepb: Repeat steps 2-4 until all explanatory variables have been added
to the set of variables or the absolute value of the current response vari-
able is less than a threshold: while [Y(¢*™")| > threshold and |S| < p

o Step6: Use the set of variables to fit a linear regression model:
Brars = (XgXg) 1 XGY

where BL ARs 18 the vector of estimated coefficients, X g is the matrix of

explanatory variables in the set S, and Y is the response variable.

LARS has the advantage of handling high-dimensional data, particularly
in cases where n << p, and it does not require the explanatory variables to be
orthogonal (uncorrelated). It can also mitigate the effects of multicollinearity,

making it a valuable tool for regression analysis.

4 Other applicable Methods

4.1 Principal Component Regression

Principal Component Regression, abbreviated as PCR, is closely related
to principal component analysis(PCA). Here we only provide a general intro-
duction and overview of the method, and the technical details can be found
here[7]. PCA is a statistical technique for reducing the dimension of a dataset.
This is accomplished by linearly transforming the data into a new coordinate
system where (most of) the variation in the data can be described with fewer
dimensions than the initial data.

Let Z,,---, Z represent a linear combination of original features, i.e.

p
Zy =2 onX,
—1

J

where ¢1,,,, -, ¢1,,, are elaborately designed constants and X; = [X 1,, X, ]".

These Zs are called principal components, which can be used to fit a linear
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model:

K
Y;l :BO+ZBkZi,k+Ei7 1= 1,"',77/
k=1

Selecting a suitable handmade hyperparameter K can effectively address the
issue of n >> p.
In short, the procedure of PCR is concluded in the following graph.

Principal - -
Component

Analysis (PCA) Linear Regression
Xnp | ™ k| 7Y

Matrix of Covariables Matrix of Principal Observation Value
Components

Figure 5: The procedure of PCR

4.2 Random Forest

Random forest[?] is a machine-learning algorithm that can be used for
classification and regression tasks. They are an ensemble method, which means
they are made up of multiple individual models that work together to make a
final prediction.

In the case of random forests, the individual models are decision trees. A
decision tree is a flowchart-like tree structure that makes predictions based on
the values of input features. A random forest builds many decision trees and
aggregates their predictions to make a final prediction.

One of the critical features of random forests is that they use a random
subset of the features at each split in the decision tree. This means that each
decision tree in the forest is slightly different, making different predictions.
The final prediction is made by averaging the predictions of all the individual
decision trees.

Random forests are widely used because they are relatively simple to imple-
ment and can handle high-dimensional and multicollinear data well. They are
also resistant to overfitting, which means that they generally do not perform
as well on the training data as on test data. This makes them a good choice

for many types of machine-learning tasks.
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To sum up, the random forest construct procedure is shown in the following

figure.

bagging

I— prediction 1

average all
predictions,

get the random
forest prediction

tesensssenes

o

training dataset

—s prediction h

L[ ] out-of-bag dataset, use it to evaluate

method = bootstrapping + sampling of features

Figure 6: The procedure of random forest

5 Core Procedures and Linear Regression Anal-
ysis

5.1 Core Procedure

The core procedures to fit the model are shown below.

samples, n =71 [ ] training dataset | testing dataset

o wm mm mm o mm mm mm mm mm mm mm o mm mm mm mm mm e e e e e e e e e e = -~
- LOOCV, round m ~
Vg ~
o n=70 [n=1] \
1 \
1 lasso } 5 folds | Ylasso m — IB lasso.m.o T ,B lasso_m._ 1 X lassom 1t =t ﬁ lasso_m_ qX lasso_m_q |* E\aluatel:l 1
training dataset
: Xlasso m= [X lasso_m_1» =+ :X lasso,m,q} :
ridge 5 folds
1 trammg dataset } rldge m — ,8 ridge_m_o + ﬁ ri[ige,m,lx ridge_m_1 + et B rifige,m,qx ridge,m,ql* evaluate l:l 1
| 1
I elastic net 5 folds I
] trammg dataset } elasth m= B elastic.m_0 + ,8 elasticﬁmﬁlx elastic_m_1 + -+ B elastic,m,qx elastic,m,ql»evaluate l:ll
| 1
I LARS ] 5 folds {lYLARS m— .B LARS.m.0 T+ B LARS_m_ 1X LARS.m. 1+ =+ B LARS_m, qX LARS_m. ql* e\aluateD 1
| training dataset 1
1 & XLARS‘ m= [X LARS m_1» - X LARS m q} 1
suitable K
I Y + Z + Z evaluate 1
| tralmug dataset} | PCR_m 18 PCR_m_0 B PCR_m_1% PCR_m_1 B PCR_M_K% LR_m Kl» l:l I
| RF suitable K | — | al ]
.. = 1t
| training dataset} s | Y m = ensemble of {DT,;, 1, DTy 5, ..., DTy g} | evaluate [ | |
\ LR, training dataset backward !
\NX = Xrar BU X }_'lyLRJn =BirmotBirmiXigmat +F LR m ¢X LRJ’IL(J » evaluate [] /
0y _m asso_m ’
SN ll#h————_——_——_—— -t b b b b bbb b b bbb " —h——h————_—— oo -7

repeat 71 times

Figure 7: core procedure to fit the model



&
. . . BERE v B
Selected topics in frontiers of Statistics 11 AERE p REAE

In short, the core procedures can be summarized in three steps:

o Stepl: Use leave one out cross validation(LOOCYV) to separate training

dataset and testing dataset

e Step2: For each training dataset, apply the methods in section three to

fit the specific model and evaluate it on the testing dataset

o Step3: Use the specific features to fit and evaluate a linear model

These procedures are implemented primarily through the ”scikit-learn” pack-
age in python. The rest of this section is a detailed explanation of steps two
and three. In step two, we need to fit different models based on different meth-
ods. In round m, we have specific training and testing dataset. Take the lasso
as an example. We run it on the training set via five folds cross validation,
which yields the best A\, ., and the model.

Yiassoim = B lasso m_ 0 + B lasso. m 1 Xlassoimil + ot B lassoimin lasso_m_ q +€

Similarly, we do it for ridge, elastic net, least angle regression, respectively.
Moreover, we need to find the specific feature for linear regression in step 3.
We know that lasso and least angle regression can select important features.

Based on this property, we use set

Xlassoim = {Xlassoimilﬂ ) X lassoimiq}

and

XLARS_m = {XLARS_m_la ) XLARS_m_q}

to record the features respectively.

In step 3, we fit the linear regression model based on the feature

XLRim = Xlassoim U XLARS?m

By applying the backward selection method, we can get the linear regres-

sion model

YiR m =Bk m 0 TAR m 1 Xtk m 17+ BLR m ¢XLR m q
and we call it the best linear regression model.

10
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5.2 Best Linear Regression Model Analysis

This section will analyze the best linear model in a randomly chosen round

m. The feature sets of lasso and least angle regression are

Xlassoim =

{X727 X243? X3147 X4147 X6237 X858? X11007 X1130, X12067 X12097 Xl2787 X13637
X1424’ X14777 X15157 X15235 X15277 X16357 X16387 X17617X18267 X18487 X18547
X20267 X2O337 X2241 ’ X23447 X2461 ’ X24837 X25637 X27387 X28737 X31037 X31047

X3225a X33107 X34647 X35137 X40027 X4OO37 X40447 X4074}

XLARS?m =

{X72, Xa14, Xa145 X623, X526, X1122> X11305 X 12787 X 1363 X 1474> X1477> X 1515
X523 X1527> X1638) X 17615 X 18195 X 18265 X 1848 X 18541 X 18565 X 2026 X 2241
Xo563: X2738> X3104) X 32257 X33105 X3513> X 40027 X4003 X4074}

Then we have XLRim - XlassoimUXLARim and |Xlass07m | - 427 |XLARsim | -
32, | X{R | = 46. Using the backward selection method, we remove the least
significant variable from the set X , at each step and eventually obtain the

following model.

11
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OLS Regression Results

Dep. Variable: y  R-squared: 8.961
Model: OLS Adj. R-squared: 8.950
Method: Least Sqguares F-statistic: 88.17
Date: Mon, 18 Dec 2022 Prob (F-statistic): .05e-32
Time: 20:97:37  Log-Likelihood: 19,982
No. Observations: 78 AIC: =7.964
Df Residuals: 55  BIC: 28.01
Df Model: 15
Covariance Type: nonrobust

coef std err t P=|t| [0.025 8.975]
@UARGF at', TI) -@.2223 @.834 -6.575 @.000 -0.290 -0.154
1('GAPB_at, 414)  @.0962 0.839 2.465 0.017 0.018 8.174
2(LYSC at, 623) -@.3798 0.166 -2.285 0.026 -9.713 -0.047
3('SPOVAA at', 1130)9,5040 0.132 3.826 0.000 0.240 0.768
4(NXHLB at', 1278) @.1508 0.043 3.526 0.001 9.065 0.237
5(YEBC_at', 1761) -@.7963 8.151 -5.289 9.000 -1.0898 -0.494
6('YFHE r_at', 1826) @.2406 8.094 2.555 9.813 8.852 0.429
7(YFIO at', 18534) @.4870 8.139 3.491 8.001 8.207 8.767
8(YHDS _r_at', 2026) @,2436 0.873 3.332 0.002 0.097 8.390
9('YKBA at', 1141) @,2808 0.0880 3.502 0.001 0.120 8.441
19('YOAB_at', 2563)-@, 8496 0.145 -5.840 0.000 -1.141 -9.558
11(YQJU_at', 3104) @.6532 0.158 4.123 0.000 9.336 8.971
12(YTGE_at', 3310)-@.0950 8.044 -2.149 9.836 -0.184 -0.0086
13(YXLD at', 4002)-@.3553 8.833 -108.836 0.000 -0.421 -8.290
14('YYDA_at', 4074)-0. 2826 @.e87 -3.244 B.082 -0.457 -0.108
Omnibus: 1.722  Durbin-Watson: 2.144
Prob{Omnibus): 08.423 Jarque-Bera (JB): 1.068
Skew: -9.091 Prob(JB): 8.586
Kurtosis: 3.577 Cond. No. .57e+@3

Figure 8: The result of the best linear model in round m

Meanwhile, we provide the residual plots:

12
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Residuals

Fitted

-1 0
Theoretical Quantiles

Figure 10: residual plot Figure 11: residual his-

Figure 9: Q_Q plot togram

Recall that the assumptions for linear models are:

o normality: residuals are normally distributed,

o independence: residuals are independent of each other,

e homoscedasticity: The variance of residuals is homogeneous.

Based on the results from figure 8 to 11, we verify the assumption one by
one with a = 0.05:

o normality: from figure 9, 11, and the value of skew and kurtosis, we

believe that residuals are normally distributed,

o independence: from the value of Durbin-Watson statistics, we believe

that residuals are independent of each other,

o homoscedasticity: from figure 10, we believe that the mean of residu-
als is 0. However, we cannot conclude that the variance of residuals is

homogeneous.

To solve heteroscedasticity, we can apply a proper transformation. How-
ever, considering that the pattern can be eliminated by removing outliers and
all other assumptions are satisfied, and both R? and adjust R? values are

fantastic, we believe this linear model is reasonable.

13
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6 Assessment Criteria and Final Models

6.1 Assessment Criteria and Analysis

ER
sets, and MSE, ,, ER,., for the testing set where E'R represents the error

We propose four assessment criteria, M SE, for the training

rain’ train

range. The formula for these criteria is as follows:

round="71 [training set|=70 ~ 9
MSE _ E 1 § : (Ymitrain - Ymitrain)
tratn — B
round ; |training set|
m=1 m_ train=1
round=T1
MSEy= > —— % (Vi o — Vi )’
test T’OUTLCZ m__test m_ test
m=1 m__test

ER, .. = [min (mm (Y. _ f)) , max (max (Y. — ?))]

round \train J J round \train J J

BRye = [min (min (v, = ¥,)) , max (max (¥, 7)) )]

round \ test round \ test
Here m_ train and m_ train represent the data in the training dataset
and the testing dataset for round m, respectively. Also,Y and Y represent
the actual value and estimated value by a specific method, respectively. The
table below records the values of different methods under these criteria, where
“overfit LR” represents the linear model fitted with all features, "best LR”
represents the best linear regression, and "RF” represents random forest. The
parentheses following each method in the first column represent the run time
of the method.

method criteria MSEtrain MSEtest ERtrain ERtest

overfit LR(4.978s) | 2.4542e-29 | 0.2657 | [-3.3750,2.9310] | [-1.6054,1.1532]
lasso(831.2s) 0.03308 | 0.2020 | [-0.4523,0.9383] | [-1.5853,0.7661]
ridge(6.988s) 4.4030e-5 0.2649 [-0.0183,0.0296] | [-1.6144,1.1497]
elastic net(433.6s) | 0.03359 | 0.2209 | [-0.4974,0.9089] | [-1.7289,0.7718]
LARS(354.3s) 0.04833 0.1955 | [-0.5273,1.0854] | [-1.6902,0.7919]
PCR(59.36s) 0.1238 0.2247 | [-0.9759,1.5454] | [-1.7926,0.9869]
RF(565.9s) 0.05855 0.4568 | [-0.6246,1.0796] | [-2.0450,1.2706]
best LR(15.44s) | 0.03211 | 0.1792 | [-0.5328,0.6925] | [-1.1666,0.9530]

Table 1: The assessment criteria for different methods

14
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In fact, compared to the test set, we are not particularly concerned with
the performance on the training set because, in the case of p >> n, the model
is very prone to overfitting and cannot predict for a new observation. A typical
example is "overfit LR”. This model performs exceptionally well on the training
set, but its performance on the test set is poor. Therefore, we need to focus
on the model’s performance on the test set. As we can see, "best LR” has the
smallest M SE and ER on the test set. Hence we consider the proposed "best
LR” model is the best.

6.2 Final Models

Ensemble methods are a set of techniques that combine the predictions of
multiple models to produce a more accurate and stable prediction of a single
model by reducing overfitting and increasing generalization.

We will use the ensemble idea to present the final model based on different

methods. More specifically,

Final lasso model Y}, ,: ensemble of {Y},ioo 1., Yiasso 71 }

Final ridge model Y, ;,,.: ensemble of {Y450 155 Yiidge 71 }

Final elastic net model Y, ;.: ensemble of {Y.qtic 15 Yelastic 71
Final LARS model Y,;,,: ensemble of {Y;Arg 1, YLARS 71 }

Final PCR model Ypop: ensemble of {Yper 1., Ypcr 71 }
Final random forest model Ypp: ensemble of {Ygg |, Ygp 71 }

Final best linear regression model Y7 : ensemble of {Y;g | ,-,Yir 71 }

In addition to the given 71 samples, if there is a new observation, then the
prediction value of the specific model generated by a certain method for this
new sample is the simple average of the prediction values of the 71 models

from the ensemble set.

15
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